Atomic Number 31
Gallium is the chemical element with the atomic number 31 and symbol Ga on the periodic table. It is in the Boron family (group 13) and in period 4. Gallium was discovered in 1875 by Paul Emile Lecoq de Boisbaudran. Boisbaudran named his newly discovered element after himself, deriving from the Latin word, “Gallia,” which means “Gaul.” Elemental Gallium does not exist in nature but gallium (III) salt can be extracted in small amounts from bauxite and zinc ores. Also, it is known for liquefying at temperatures just above room temperature.
Gallium is the chemical element with the atomic number 31 and symbol Ga on the periodic table. It is in the Boron family (group 13) and in period 4. Gallium was discovered in 1875 by Paul Emile Lecoq de Boisbaudran. Boisbaudran named his newly discovered element after himself, deriving from the Latin word, “Gallia,” which means “Gaul.”. A rare silvery (usually trivalent) metallic element; brittle at low temperatures but liquid above room temperature; occurs in trace amounts in bauxite and zinc ores. Atomic Number of Elements in Periodic Table. We remember from our school chemistry course that every element has its own specific atomic number.It is the same as the number of protons that the atom of each element has, so sometimes atomic number is called proton number.It is always the whole number and it ranges from 1 to 118, according to the number of the element in the Periodic Table. . group 13. block p. It is very easy to calculate peiodic no. The highest Principal quantum number in the configuration gives the period, and the.
Introduction
Gallium is one of the elements originally predicted by Mendeleev in 1871 when he published the first form of the periodic table. He dubbed it ekaaluminum, indicating that it should have chemical properties similar to aluminum. The actual metal was isolated and named (from the Latin Gallia, for France) by Paul-Emile Lecoq de Boisbaudran in 1875.
The detective work behind the isolation of gallium depended on the recognition of unexpected lines in the emission spectrum of a zinc mineral, sphalerite. Eventual extraction and characterization followed. Today, most gallium is still extracted from this zinc mineral.
Although once considered fairly obscure, gallium became an important commercial item in the '70s with the advent of gallium arsenide LEDs and laser diodes. At room temperature gallium is as soft as lead and can be cut with a knife. Its melting point is abnormally low and it will begin to melt in the palm of a warm hand. Gallium is one of a small number of metals that expands when freezing.
Basic Chemical and Physical Properties
Atomic Number | 31 |
Atomic Mass | 69.723 g/mol |
Element Category | Post-transition metal |
Phase | Solid |
Electronegativity | 1.6 (Pauling Scale) |
Density (at 0oC) | 5.91 g/cm3 |
Melting Point | 29.7646oC |
Boiling Point | 2204oC |
Atomic Radius | 135 pm |
Ionic Radius | 62 pm |
Isotopes | 2 (69Ga; 60.11% & 71Ga; 39.89%) |
1st ionization energy | 578.8 kJ/mol |
Electrode Potential | -0.56 eo |
Electrical Conductivity | 9.1 |
Oxidation States | +3,+2, +1 |
Hardness | 1.5 (Mohs) 60 MPa (Brinell) |
Crystal Structure | Orthorhombic |
Specific Heat | 25.86 J/molK |
Heat of Fusion | 5.59 kJ/mol |
Heat of Vaporization | 254 kJ/mol |
Electronic Configuration | 1s22s22p63s23p64s23d104p1 [Ar]4s2 3d104p1 |
Characteristics
Gallium has a few notable characteristics which are summarized below:
- In its solid phase, Gallium is blue-grey in color
- It melts in temperatures warmer than room temperature; therefore, if you were to hold a chunk of gallium in your hand, it will start to liquefy.
- Solid gallium is soft and can easily be cut with a knife.
- It is stable in air and water, but reacts and dissolves in acids and alkalis.
- If solidifying, gallium expands by 3.1 percent and thus storage in glass or metal is avoided.
- It also easily to transform into an alloy with many metals and has been used in nuclear bombs to stabilize the crystal structure.
- Gallium is one of the few metals that can replace the use the mercury in thermometers because its melting point is close to room temperature.
Video 1: the video depicts the solidifying of liquid Gallium in 10x speed. Density of solid Gallium smaller than density of the liquid, so it's expanding during solidification and break the bottle.
Video 2: The video shows Gallium melting in your hands due to its melting point.
Occurrences
Gallium usually cannot be found in nature. It exists in the earth's crust, where its abundance is about 16.9 ppm. It is extracted from bauxite and sometimes sphalerite. Gallium can also be found in coal, diaspore and germanite.

Applications
Health: While Gallium can be found in the human body in very small amounts, there is no evidence for it harming the body. In fact, Gallium (III) salt is used in many pharmaceuticals, used as treatment for hypercalcemia, which can lead to growth of tumors on bones. Further, it has even been suggested that it can be used to treat cancer, infectious disease, and inflammatory disease. However, exposure to large amounts of Gallium can cause irritation in the throat, chest pains, and the fume it produces can lead to very serious conditions.
Semiconductors: Roughly 90-95% of gallium consumption is in the electronics industry. In the United States, Gallium arsenide (GaAs) and gallium nitride (GaN) represent approximately 98% of the gallium consumption. Gallium arsenide (GaAs) can convert light directly into electricity. Further, gallium arsenide is also used in LEDs and transistors.
Other applications of Gallium deal with wetting and alloy improvement:
Gallium has the property to wet porcelain and even glass surfaces. As a result, gallium can be used to create dazzling mirrors. Scientists employ an alloy with Gallium for the plutonium pits of nuclear weapons to stabilize the alloptropes of plutonium. As a result, some have issue with the element.
References
- Petrucci, Harwood, Herring, and Madura - General Chemistry 9th Edition
Problems
- What is the electronic configuration of Gallium?
- What do you think is one of the issues that people might have with usage of gallium?
- Gallium is part of which group and period?
- What are some applications of Gallium?
- Name three properties of Gallium that make it different from any other element.
Answers
- 1s22s22p63s23p64s23d104p1
- The use of it in nuclear bombs.
- Gallium is in group 13 (Boron family) and in period 4.
- Semiconductors; cancer treatment; hypercalcemia treatment; stabilization in nuclear bombs. See section above on Application for more detail.
- 5. See the section above on properties and characteristics for more detail.
- Gallium is blue-grey in color in its solid phase.
- Melts in temperatures warmer than room temperature
- Stable in air and water, but reacts and dissolves in acids and alkalis.
Contributors and Attributions
- Angela Tang, Sarang Dave
Stephen R. Marsden
Click a column header, such as Name, to sort the table by that item.
SEENotes at the bottom of the Table.
No. | Atomic weight | Name | Sym. | M.P. (°C) | B.P. (°C) | Density* (g/cm3) | Earth crust (%)* | Discovery (Year) | Group* | Electron configuration | Ionization energy (eV) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.008 | Hydrogen | H | -259 | -253 | 0.09 | 0.14 | 1776 | 1 | 1s1 | 13.60 | |
2 | 4.003 | Helium | He | -272 | -269 | 0.18 | 1895 | 18 | 1s2 | 24.59 | ||
3 | 6.941 | Lithium | Li | 180 | 1,347 | 0.53 | 1817 | 1 | [He] 2s1 | 5.39 | ||
4 | 9.012 | Beryllium | Be | 1,278 | 2,970 | 1.85 | 1797 | 2 | [He] 2s2 | 9.32 | ||
5 | 10.811 | Boron | B | 2,300 | 2,550 | 2.34 | 1808 | 13 | [He] 2s2 2p1 | 8.30 | ||
6 | 12.011 | Carbon | C | 3,500 | 4,827 | 2.26 | 0.09 | ancient | 14 | [He] 2s2 2p2 | 11.26 | |
7 | 14.007 | Nitrogen | N | -210 | -196 | 1.25 | 1772 | 15 | [He] 2s2 2p3 | 14.53 | ||
8 | 15.999 | Oxygen | O | -218 | -183 | 1.43 | 46.71 | 1774 | 16 | [He] 2s2 2p4 | 13.62 | |
9 | 18.998 | Fluorine | F | -220 | -188 | 1.70 | 0.03 | 1886 | 17 | [He] 2s2 2p5 | 17.42 | |
10 | 20.180 | Neon | Ne | -249 | -246 | 0.90 | 1898 | 18 | [He] 2s2 2p6 | 21.56 | ||
11 | 22.990 | Sodium | Na | 98 | 883 | 0.97 | 2.75 | 1807 | 1 | [Ne] 3s1 | 5.14 | |
12 | 24.305 | Magnesium | Mg | 639 | 1,090 | 1.74 | 2.08 | 1755 | 2 | [Ne] 3s2 | 7.65 | |
13 | 26.982 | Aluminum | Al | 660 | 2,467 | 2.70 | 8.07 | 1825 | 13 | [Ne] 3s2 3p1 | 5.99 | |
14 | 28.086 | Silicon | Si | 1,410 | 2,355 | 2.33 | 27.69 | 1824 | 14 | [Ne] 3s2 3p2 | 8.15 | |
15 | 30.974 | Phosphorus | P | 44 | 280 | 1.82 | 0.13 | 1669 | 15 | [Ne] 3s2 3p3 | 10.49 | |
16 | 32.065 | Sulfur | S | 113 | 445 | 2.07 | 0.05 | ancient | 16 | [Ne] 3s2 3p4 | 10.36 | |
17 | 35.453 | Chlorine | Cl | -101 | -35 | 3.21 | 0.05 | 1774 | 17 | [Ne] 3s2 3p5 | 12.97 | |
18 | 39.948 | Argon | Ar | -189 | -186 | 1.78 | 1894 | 18 | [Ne] 3s2 3p6 | 15.76 | ||
19 | 39.098 | Potassium | K | 64 | 774 | 0.86 | 2.58 | 1807 | 1 | [Ar] 4s1 | 4.34 | |
20 | 40.078 | Calcium | Ca | 839 | 1,484 | 1.55 | 3.65 | 1808 | 2 | [Ar] 4s2 | 6.11 | |
21 | 44.956 | Scandium | Sc | 1,539 | 2,832 | 2.99 | 1879 | 3 | [Ar] 3d1 4s2 | 6.56 | ||
22 | 47.867 | Titanium | Ti | 1,660 | 3,287 | 4.54 | 0.62 | 1791 | 4 | [Ar] 3d2 4s2 | 6.83 | |
23 | 50.942 | Vanadium | V | 1,890 | 3,380 | 6.11 | 1830 | 5 | [Ar] 3d3 4s2 | 6.75 | ||
24 | 51.996 | Chromium | Cr | 1,857 | 2,672 | 7.19 | 0.04 | 1797 | 6 | [Ar] 3d5 4s1 | 6.77 | |
25 | 54.938 | Manganese | Mn | 1,245 | 1,962 | 7.43 | 0.09 | 1774 | 7 | [Ar] 3d5 4s2 | 7.43 | |
26 | 55.845 | Iron | Fe | 1,535 | 2,750 | 7.87 | 5.05 | ancient | 8 | [Ar] 3d6 4s2 | 7.90 | |
27 | 58.933 | Cobalt | Co | 1,495 | 2,870 | 8.90 | 1735 | 9 | [Ar] 3d7 4s2 | 7.88 | ||
28 | 58.693 | Nickel | Ni | 1,453 | 2,732 | 8.90 | 0.02 | 1751 | 10 | [Ar] 3d8 4s2 | 7.64 | |
29 | 63.546 | Copper | Cu | 1,083 | 2,567 | 8.96 | ancient | 11 | [Ar] 3d10 4s1 | 7.73 | ||
30 | 65.390 | Zinc | Zn | 420 | 907 | 7.13 | ancient | 12 | [Ar] 3d10 4s2 | 9.39 | ||
31 | 69.723 | Gallium | Ga | 30 | 2,403 | 5.91 | 1875 | 13 | [Ar] 3d10 4s2 4p1 | 6.00 | ||
32 | 72.640 | Germanium | Ge | 937 | 2,830 | 5.32 | 1886 | 14 | [Ar] 3d10 4s2 4p2 | 7.90 | ||
33 | 74.922 | Arsenic | As | 81 | 613 | 5.72 | ancient | 15 | [Ar] 3d10 4s2 4p3 | 9.79 | ||
34 | 78.960 | Selenium | Se | 217 | 685 | 4.79 | 1817 | 16 | [Ar] 3d10 4s2 4p4 | 9.75 | ||
35 | 79.904 | Bromine | Br | -7 | 59 | 3.12 | 1826 | 17 | [Ar] 3d10 4s2 4p5 | 11.81 | ||
36 | 83.800 | Krypton | Kr | -157 | -153 | 3.75 | 1898 | 18 | [Ar] 3d10 4s2 4p6 | 14.00 | ||
37 | 85.468 | Rubidium | Rb | 39 | 688 | 1.63 | 1861 | 1 | [Kr] 5s1 | 4.18 | ||
38 | 87.620 | Strontium | Sr | 769 | 1,384 | 2.54 | 1790 | 2 | [Kr] 5s2 | 5.69 | ||
39 | 88.906 | Yttrium | Y | 1,523 | 3,337 | 4.47 | 1794 | 3 | [Kr] 4d1 5s2 | 6.22 | ||
40 | 91.224 | Zirconium | Zr | 1,852 | 4,377 | 6.51 | 0.03 | 1789 | 4 | [Kr] 4d2 5s2 | 6.63 | |
41 | 92.906 | Niobium | Nb | 2,468 | 4,927 | 8.57 | 1801 | 5 | [Kr] 4d4 5s1 | 6.76 | ||
42 | 95.940 | Molybdenum | Mo | 2,617 | 4,612 | 10.22 | 1781 | 6 | [Kr] 4d5 5s1 | 7.09 | ||
43 | * | 98.000 | Technetium | Tc | 2,200 | 4,877 | 11.50 | 1937 | 7 | [Kr] 4d5 5s2 | 7.28 | |
44 | 101.070 | Ruthenium | Ru | 2,250 | 3,900 | 12.37 | 1844 | 8 | [Kr] 4d7 5s1 | 7.36 | ||
45 | 102.906 | Rhodium | Rh | 1,966 | 3,727 | 12.41 | 1803 | 9 | [Kr] 4d8 5s1 | 7.46 | ||
46 | 106.420 | Palladium | Pd | 1,552 | 2,927 | 12.02 | 1803 | 10 | [Kr] 4d10 | 8.34 | ||
47 | 107.868 | Silver | Ag | 962 | 2,212 | 10.50 | ancient | 11 | [Kr] 4d10 5s1 | 7.58 | ||
48 | 112.411 | Cadmium | Cd | 321 | 765 | 8.65 | 1817 | 12 | [Kr] 4d10 5s2 | 8.99 | ||
49 | 114.818 | Indium | In | 157 | 2,000 | 7.31 | 1863 | 13 | [Kr] 4d10 5s2 5p1 | 5.79 | ||
50 | 118.710 | Tin | Sn | 232 | 2,270 | 7.31 | ancient | 14 | [Kr] 4d10 5s2 5p2 | 7.34 | ||
51 | 121.760 | Antimony | Sb | 630 | 1,750 | 6.68 | ancient | 15 | [Kr] 4d10 5s2 5p3 | 8.61 | ||
52 | 127.600 | Tellurium | Te | 449 | 990 | 6.24 | 1783 | 16 | [Kr] 4d10 5s2 5p4 | 9.01 | ||
53 | 126.905 | Iodine | I | 114 | 184 | 4.93 | 1811 | 17 | [Kr] 4d10 5s2 5p5 | 10.45 | ||
54 | 131.293 | Xenon | Xe | -112 | -108 | 5.90 | 1898 | 18 | [Kr] 4d10 5s2 5p6 | 12.13 | ||
55 | 132.906 | Cesium | Cs | 29 | 678 | 1.87 | 1860 | 1 | [Xe] 6s1 | 3.89 | ||
56 | 137.327 | Barium | Ba | 725 | 1,140 | 3.59 | 0.05 | 1808 | 2 | [Xe] 6s2 | 5.21 | |
57 | 138.906 | Lanthanum | La | 920 | 3,469 | 6.15 | 1839 | 3 | [Xe] 5d1 6s2 | 5.58 | ||
58 | 140.116 | Cerium | Ce | 795 | 3,257 | 6.77 | 1803 | 101 | [Xe] 4f1 5d1 6s2 | 5.54 | ||
59 | 140.908 | Praseodymium | Pr | 935 | 3,127 | 6.77 | 1885 | 101 | [Xe] 4f3 6s2 | 5.47 | ||
60 | 144.240 | Neodymium | Nd | 1,010 | 3,127 | 7.01 | 1885 | 101 | [Xe] 4f4 6s2 | 5.53 | ||
61 | * | 145.000 | Promethium | Pm | 1,100 | 3,000 | 7.30 | 1945 | 101 | [Xe] 4f5 6s2 | 5.58 | |
62 | 150.360 | Samarium | Sm | 1,072 | 1,900 | 7.52 | 1879 | 101 | [Xe] 4f6 6s2 | 5.64 | ||
63 | 151.964 | Europium | Eu | 822 | 1,597 | 5.24 | 1901 | 101 | [Xe] 4f7 6s2 | 5.67 | ||
64 | 157.250 | Gadolinium | Gd | 1,311 | 3,233 | 7.90 | 1880 | 101 | [Xe] 4f7 5d1 6s2 | 6.15 | ||
65 | 158.925 | Terbium | Tb | 1,360 | 3,041 | 8.23 | 1843 | 101 | [Xe] 4f9 6s2 | 5.86 | ||
66 | 162.500 | Dysprosium | Dy | 1,412 | 2,562 | 8.55 | 1886 | 101 | [Xe] 4f10 6s2 | 5.94 | ||
67 | 164.930 | Holmium | Ho | 1,470 | 2,720 | 8.80 | 1867 | 101 | [Xe] 4f11 6s2 | 6.02 | ||
68 | 167.259 | Erbium | Er | 1,522 | 2,510 | 9.07 | 1842 | 101 | [Xe] 4f12 6s2 | 6.11 | ||
69 | 168.934 | Thulium | Tm | 1,545 | 1,727 | 9.32 | 1879 | 101 | [Xe] 4f13 6s2 | 6.18 | ||
70 | 173.040 | Ytterbium | Yb | 824 | 1,466 | 6.90 | 1878 | 101 | [Xe] 4f14 6s2 | 6.25 | ||
71 | 174.967 | Lutetium | Lu | 1,656 | 3,315 | 9.84 | 1907 | 101 | [Xe] 4f14 5d1 6s2 | 5.43 | ||
72 | 178.490 | Hafnium | Hf | 2,150 | 5,400 | 13.31 | 1923 | 4 | [Xe] 4f14 5d2 6s2 | 6.83 | ||
73 | 180.948 | Tantalum | Ta | 2,996 | 5,425 | 16.65 | 1802 | 5 | [Xe] 4f14 5d3 6s2 | 7.55 | ||
74 | 183.840 | Tungsten | W | 3,410 | 5,660 | 19.35 | 1783 | 6 | [Xe] 4f14 5d4 6s2 | 7.86 | ||
75 | 186.207 | Rhenium | Re | 3,180 | 5,627 | 21.04 | 1925 | 7 | [Xe] 4f14 5d5 6s2 | 7.83 | ||
76 | 190.230 | Osmium | Os | 3,045 | 5,027 | 22.60 | 1803 | 8 | [Xe] 4f14 5d6 6s2 | 8.44 | ||
77 | 192.217 | Iridium | Ir | 2,410 | 4,527 | 22.40 | 1803 | 9 | [Xe] 4f14 5d7 6s2 | 8.97 | ||
78 | 195.078 | Platinum | Pt | 1,772 | 3,827 | 21.45 | 1735 | 10 | [Xe] 4f14 5d9 6s1 | 8.96 | ||
79 | 196.967 | Gold | Au | 1,064 | 2,807 | 19.32 | ancient | 11 | [Xe] 4f14 5d10 6s1 | 9.23 | ||
80 | 200.590 | Mercury | Hg | -39 | 357 | 13.55 | ancient | 12 | [Xe] 4f14 5d10 6s2 | 10.44 | ||
81 | 204.383 | Thallium | Tl | 303 | 1,457 | 11.85 | 1861 | 13 | [Xe] 4f14 5d10 6s2 6p1 | 6.11 | ||
82 | 207.200 | Lead | Pb | 327 | 1,740 | 11.35 | ancient | 14 | [Xe] 4f14 5d10 6s2 6p2 | 7.42 | ||
83 | 208.980 | Bismuth | Bi | 271 | 1,560 | 9.75 | ancient | 15 | [Xe] 4f14 5d10 6s2 6p3 | 7.29 | ||
84 | * | 209.000 | Polonium | Po | 254 | 962 | 9.30 | 1898 | 16 | [Xe] 4f14 5d10 6s2 6p4 | 8.42 | |
85 | * | 210.000 | Astatine | At | 302 | 337 | 0.00 | 1940 | 17 | [Xe] 4f14 5d10 6s2 6p5 | 9.30 | |
86 | * | 222.000 | Radon | Rn | -71 | -62 | 9.73 | 1900 | 18 | [Xe] 4f14 5d10 6s2 6p6 | 10.75 | |
87 | * | 223.000 | Francium | Fr | 27 | 677 | 0.00 | 1939 | 1 | [Rn] 7s1 | 4.07 | |
88 | * | 226.000 | Radium | Ra | 700 | 1,737 | 5.50 | 1898 | 2 | [Rn] 7s2 | 5.28 | |
89 | * | 227.000 | Actinium | Ac | 1,050 | 3,200 | 10.07 | 1899 | 3 | [Rn] 6d1 7s2 | 5.17 | |
90 | 232.038 | Thorium | Th | 1,750 | 4,790 | 11.72 | 1829 | 102 | [Rn] 6d2 7s2 | 6.31 | ||
91 | 231.036 | Protactinium | Pa | 1,568 | 0 | 15.40 | 1913 | 102 | [Rn] 5f2 6d1 7s2 | 5.89 | ||
92 | 238.029 | Uranium | U | 1,132 | 3,818 | 18.95 | 1789 | 102 | [Rn] 5f3 6d1 7s2 | 6.19 | ||
93 | * | 237.000 | Neptunium | Np | 640 | 3,902 | 20.20 | 1940 | 102 | [Rn] 5f4 6d1 7s2 | 6.27 | |
94 | * | 244.000 | Plutonium | Pu | 640 | 3,235 | 19.84 | 1940 | 102 | [Rn] 5f6 7s2 | 6.03 | |
95 | * | 243.000 | Americium | Am | 994 | 2,607 | 13.67 | 1944 | 102 | [Rn] 5f7 7s2 | 5.97 | |
96 | * | 247.000 | Curium | Cm | 1,340 | 0 | 13.50 | 1944 | 102 | 5.99 | ||
97 | * | 247.000 | Berkelium | Bk | 986 | 0 | 14.78 | 1949 | 102 | 6.20 | ||
98 | * | 251.000 | Californium | Cf | 900 | 0 | 15.10 | 1950 | 102 | 6.28 | ||
99 | * | 252.000 | Einsteinium | Es | 860 | 0 | 0.00 | 1952 | 102 | 6.42 | ||
100 | * | 257.000 | Fermium | Fm | 1,527 | 0 | 0.00 | 1952 | 102 | 6.50 | ||
101 | * | 258.000 | Mendelevium | Md | 0 | 0 | 0.00 | 1955 | 102 | 6.58 | ||
102 | * | 259.000 | Nobelium | No | 827 | 0 | 0.00 | 1958 | 102 | 6.65 | ||
103 | * | 262.000 | Lawrencium | Lr | 1,627 | 0 | 0.00 | 1961 | 102 | 4.90 | ||
104 | * | 261.000 | Rutherfordium | Rf | 0 | 0 | 0.00 | 1964 | 4 | 0.00 | ||
105 | * | 262.000 | Dubnium | Db | 0 | 0 | 0.00 | 1967 | 5 | 0.00 | ||
106 | * | 266.000 | Seaborgium | Sg | 0 | 0 | 0.00 | 1974 | 6 | 0.00 | ||
107 | * | 264.000 | Bohrium | Bh | 0 | 0 | 0.00 | 1981 | 7 | 0.00 | ||
108 | * | 277.000 | Hassium | Hs | 0 | 0 | 0.00 | 1984 | 8 | 0.00 | ||
109 | * | 268.000 | Meitnerium | Mt | 0 | 0 | 0.00 | 1982 | 9 | 0.00 | ||
No. | Atomic weight | Name | Sym. | M.P. (°C) | B.P. (°C) | Density* (g/cm3) | Earth crust (%)* | Discovery (Year) | Group* | Electron configuration | Ionization energy (eV) |
Notes:
• Density of elements with boiling points below 0°C is given in g/l. In a sorted list, these elements are shown before other elements that have boiling points >0°C.
• Earth crust composition average values are from a report by F. W. Clarke and H. S. Washington, 1924. Elemental composition of crustal rocks differ between different localities (see article).
• Group: There are only 18 groups in the periodic table that constitute the columns of the table. Lanthanoids and Actinoids are numbered as 101 and 102 to separate them in sorting by group.
• The elements marked with an asterisk (in the 2nd column) have no stable nuclides. For these elements the weight value shown represents the mass number of the longest-lived isotope of the element.
Abbreviations and Definitions:

No. - Atomic Number; M.P. - melting point; B.P. - boiling point
Atomic number: The number of protons in an atom. Each element is uniquely defined by its atomic number.

Atomic mass: The mass of an atom is primarily determined by the number of protons and neutrons in its nucleus. Atomic mass is measured in Atomic Mass Units (amu) which are scaled relative to carbon, 12C, that is taken as a standard element with an atomic mass of 12. This isotope of carbon has 6 protons and 6 neutrons. Thus, each proton and neutron has a mass of about 1 amu.
Isotope: Atoms of the same element with the same atomic number, but different number of neutrons. Isotope of an element is defined by the sum of the number of protons and neutrons in its nucleus. Elements have more than one isotope with varying numbers of neutrons. For example, there are two common isotopes of carbon, 12C and 13C which have 6 and 7 neutrons respectively. The abundances of different isotopes of elements vary in nature depending on the source of materials. For relative abundances of isotopes in nature see reference on Atomic Weights and Isotopic Compositions.
Atomic weight: Atomic weight values represent weighted average of the masses of all naturally occurring isotopes of an element. The values shown here are based on the IUPAC Commission determinations (Pure Appl. Chem. 73:667-683, 2001). The elements marked with an asterisk have no stable nuclides. For these elements the weight value shown represents the mass number of the longest-lived isotope of the element.
Electron configuration: See next page for explanation of electron configuration of atoms.
Atomic Mass Number Calculator
Ionization energy (IE): The energy required to remove the outermost electron from an atom or a positive ion in its ground level. The table lists only the first IE in eV units. To convert to kJ/mol multiply by 96.4869. Reference: NIST Reference Table on Ground states and ionization energies for the neutral atoms. IE decreases going down a column of the periodic table, and increases from left to right in a row. Thus, alkali metals have the lowest IE in a period and Rare gases have the highest.
Other resources related to the Periodic Table
Atomic Number 31 Metal
- Chemical Evolution of the Universe
